Long-tailed Learning
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Fig. Cityscapes Dataset pixel distribution
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Problem Definition

 Motivation:

— Learn a deep neural network model
from a training dataset with a long-
tailed class distribution.

e Tasks:

— Image Classification, Detection and
Segmentation; Visual Relation Learning,
etc.

* Challenges:

— Imbalanced data numbers across classes,
biased to head class

— Lack of tail-class samples
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Fig. 1. The label distribution of a long-tailed dataset (e.g., the iNaturalist
species dataset [23] with more than 8,000 classes). The head-class feature space
learned on these sampled is often larger than tail classes, while the decision
boundary is usually biased towards dominant classes.

Box output format :



Datasets

TABLE I
STATISTICS OF LONG-TAILED DATASETS

Note: ImageNet, CIFAR100 and

Task Dataset classes training data test data
#* * = i Places365 are Sampled from Pareto
ImageNet-LT [15] 1,000 115,846 50,000 distributions, and iNaturalist is a real-
Cls CIFAR100-LT [18] 100 50,000 10,000 world lona-tailed dataset
' Places-LT [15] 365 62,500 36,500 9
iNaturalist 2018 [23] 8,142 437,513 24,426
Dt/ LVIS v0.5 [36] 1,230 57,000 20,000
/€8 LVIS v1 [36] 1,203 100,000 19,800
. VOC-LT [37] 20 1,142 4,952
Multi-label Cls.  ~q0g 17 1371 80 1,909 5.000
Video Cls. VideoLT [38] 1,004 179,352 51,244

“Cls.” indicates image classification; “det.” represents object detection;
“seg.” means instance segmentation.



Evaluation Metrics

 To evaluate how well class imbalance is resolved:
— The model performance on all classes

— The performance on class subsets (i.e., head, middle and
tail classes)

« Evaluation Metfrics:
— For balanced test sets: Top-1 Accuracy / Error Rate

— For imbalanced test sets: mean Average Precision
(mAP) / macro accuracy (treat each class equally)



Relationships With Related Tasks

» Class-imbalanced learning
— LT Learning is a subset of Class-imbalanced learning

— Differences: Long-tailed class distribution; the number of class; tail class
samples.

* Few-shot learning

— Train models from a limited number of labeled samples (e.g., 1 or 5) per
class.

— A sub-task of long-tailed learning.



Advanced long-tailed learning methods

r Re-sampling (Sec. 3.1.1)
Class
r Re-balancing 4 Class-sensitive Learning (Sec. 3.1.2)
(Sec. 3.1)

~ Logit Adjustment (Sec. 3.1.3)

7 i Information Transfer Learning (Sec. 3.2.1)
E:g;n?:lg {1 Augmentation {
(Sec. 3.2) Data Augmentation (Sec. 3.2.2)
r Representation Learning (Sec. 3.3.1)
Module Classifier Design (Sec. 3.3.2)
~  Improvement 4
(Sec. 3.3) Decoupled Training (Sec. 3.3.3)

~ Ensemble Learning (Sec. 3.3.4)

Fig. 2. Taxonomy of existing deep long-tailed learning methods.



Methods: Class Re-balancing

r Re-sampling (Sec. 3.1.1)

Class
Re-balancing 4 Class-sensitive Learning (Sec. 3.1.2)
(Sec. 3.1)

~ Logit Adjustment (Sec. 3.1.3)

Summary
— Goal: Re-balancing classes.

— Drawback: (1) Improve tail-class performance at the cost of lower
head-class performance; (2) cannot handle lacking tail class

iInformation.



Methods: Class Re-balancing (1)

r Re-sampling (Sec. 3.1.1)
Class
Re-balancing 4 Class-sensitive Learning (Sec. 3.1.2)
. Sec. 3.1
« Re-sampling s

~ Logit Adjustment (Sec. 3.1.3)

— Targeted Issue: Random sampling samples more head-class samples than

tail-class samples in each sample mini-batch.

— Method: Rebalance classes by adjusting the number of samples per class
iIn each sample batch for model training.

* (1) The label frequencies of different classes are known a priori;

* (2) The statistics of model training to guide re-sampling - preferred for real applications.

— Address the class imbalance issue at the sample level



Methods: Class Re-balancing (2)

r Re-sampling (Sec. 3.1.1)
Class
o ] Re-balancing 4 Class-sensitive Learning (Sec. 3.1.2)
+ Class-Sensitive Learning (Sec. 3.1)

~ Logit Adjustment (Sec. 3.1.3)
— Targeted Issue: Conventional Softmax CE Loss ignores the class

imbalance in data sizes and tends to generate uneven gradients for

different classes.

— Method: Adjust the training loss values for various classes to re-balance
the uneven training effects caused by the imbalance issue.
* (1) Re-weighting: ;
* (2) Re-margining: .

— Resolve the class imbalance issue at the objective level.



Methods: Class Re-balancing (3)

r Re-sampling (Sec. 3.1.1)
Class
. . Re-balancing 4 Class-sensitive Learning (Sec. 3.1.2)
* Logits Adjustment (Sec. 3.1)

~ Logit Adjustment (Sec. 3.1.3)
— Targeted Issue: Logit adjustment is Fisher consistent to minimize the average

per-class error.

— Method: Resolve the class imbalance by adjusting the prediction logits of a
class-biased deep model.

(1) Post-adjust the predictions of biased deep models: If the training label frequencies are

known;

* (2) Learn an adaptive calibration function: training label frequencies are unkown.

— Address the class imbalance at the Prediction Level.



Methods: Information Augmentation

Information { Transfer Learning (Sec. 3.2.1)

Sum mary Augmentation
(Sec. 3.2)

— Goal: Introduce additional information into

Data Augmentation (Sec. 3.2.2)

model training, so that the model
performance can be improved for long-

tailed learning.

— Drawback: (1) ignore the class imbalance
and inevitably augment more head-class

samples than tail-class samples.



Methods: Information Augmentation (1)

Information { Transfer Learning (Sec. 3.2.1)

Augmentation
(Sec. 3.2)

 Transfer Learnin
J Data Augmentation (Sec. 3.2.2)

— Targeted Issue: .

— Method: Transfer the knowledge from a source domain (e.g., datasets) to enhance model
training on a target domain.
* (1) Model pre-training: fine-tunes the model on a more class-balanced training subset;

* (2) Knowledge distillation: Train a student model based on the outputs of a well-trained teacher

model;
* (3) Head-to-tail model transfer: ;

* (4) Self-training: learn well-performing models from a small number of labeled samples and massive

unlabeled samples.
— Address the class imbalance at the Prediction Level.

— Advantages: Most of them can be used together.



Methods: Information Augmentation (2)

Information { Transfer Learning (Sec. 3.2.1)

» Data Augmentation Augmentation
(Sec. 3.2)

— Targeted Issue: Tail-class samples have much smaller intra-class variance

Data Augmentation (Sec. 3.2.2)

than head-class samples, leading to biased feature spaces and decision

boundaries.

— Method: Enhance the size and quality of datasets by applying pre-defined
transformations to each data / feature for model training.

* (1) Head-to-tail transfer augmentation: Transfer the knowledge from head classes to

augment tail-class samples;

* (2) Non-transfer augmentation: improve or design conventional data augmentation methods.

— Address the class imbalance at the Sample or Feature Levels.



Methods: Module Improvement

* Summary

— Goal: Seek to address long-tailed

problems by improving network modules.

— Advantages: Thanks to the aggregation
of multiple experts, are able to achieve
better long-tailed performance without
sacrificing the performance on any class

Module
subsets. Improvement

(Sec. 3.3)

<

r Representation Learning (Sec. 3.3.1)
Classifier Design (Sec. 3.3.2)

Decoupled Training (Sec. 3.3.3)

~ Ensemble Learning (Sec. 3.3.4)



Methods: Module Improvement (1)

* Representation Learning
— Targeted Issue: Improves the feature extractor.

— Method: Three main paradigms:

* (1) Metric learning: Designing task-specific distance metrics for establishing similarity or
dissimilarity between data;

» (2) Prototype learning: Learn class-specific feature prototypes to enhance long-tailed

learning performance.

* (3) Sequential training: Learn data representation in a continual way.

— Address the class imbalance at the Feature Levels. r Representtion].sarming (565 .3

Module Classifier Design (Sec. 3.3.2)
Improvement <
(Sec. 3.3) Decoupled Training (Sec. 3.3.3)

~ Ensemble Learning (Sec. 3.3.4)



Methods: Module Improvement (2)(3)

» Classifier Design

— Targeted Issue: Larger classifier weight norms for head classes than tail classes.

— Address the class imbalance at the Classifier Levels.

* Decoupled Training

— Method: Decouples the learning procedure into representation learning and classifier training.

— Address the class imbalance at the Feature and Classifier Levels.

Module
Improvement
(Sec. 3.3)

<

r Representation Learning (Sec. 3.3.1)
Classifier Design (Sec. 3.3.2)

Decoupled Training (Sec. 3.3.3)

~ Ensemble Learning (Sec. 3.3.4)



Methods: Module Improvement

« Ensemble Learning

Method: Generate and
combine multiple network

modules.

Address the class imbalance
at the Model Level.
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Fig. 3. Illustrations of existing ensemble-based long-tailed methods. Compared to standard training (a), the trained experts by ensemble-based methods (b-f)
may have different expertise, e.g., being skilled in different class distributions or different class subsets (indicated by different colors). For example, BBN and
SimCAL train two experts for simulating the original long-tailed and uniform distributions so that they can address the two distributions well. BAGS, LEME, ACE,
and ResLT train multiple experts by sampling class subsets, so that different experts can particularly handle different sets of classes. SADE directly trains multiple
experts to separately simulate long-tailed, uniform and inverse long-tailed class distributions from a stationary long-tailed distribution, which enables it to handle
test sets with agnostic class distributions based on self-supervised aggregation.




